Improving future gravitational-wave detectors using nondegenerate internal squeezing

James Gardner Min Jet Yap, Vaishali Adya, Sheon Chua, and David McClelland

The Centre for Gravitational Astrophysics, ANU

November 10, 2021

Motivation: kilohertz gravitational waves

- 1. Neutron-star equation-of-state
- 2. Origin of low-mass black holes
- 3. Post-bounce dynamics of core-collapse supernovae
- 4. Primordial sources

video credit: [NASA/Goddard Space Flight Center, 2010]

Potential astrophysical science from [K. Ackley, V. B. Adya, and P. Agrawal et al., 2020, Publ. Astron. Soc. Aust., 37]

Current gravitational-wave detectors

(top) image credit: [Christopher Berry, 2015], (bottom) [J. Aasi et al., 2015. Class. Quantum Grav., 32:074001]

Quantum noise and squeezing

Quantum noise and squeezing

Quantum noise and squeezing

Review of squeezing for gravitational-wave detection in [S. L. Danilishin and F. Y. Khalili. 2012. Living Rev. Relativ., 15(1):5.]

Cavities and external squeezing

External squeezing in LIGO from [M. Tse, H. Yu, N. Kijbunchoo, et al. 2019. Phys. Rev. Lett., 123(23):231107.]

Degenerate internal squeezing

Degenerate internal squeezing from [M. Korobko, Y. Ma, Y. Chen, et al., 2019, Light Sci. Appl., 8(1):118]

Nondegenerate internal squeezing

Analytic model of nondegenerate internal squeezing:

Lossless Hamiltonian from [X. Li, M. Goryachev, Y. Ma, et al., 2020, arXiv:2012.00836 [quant-ph]]

- 1. Validation
- 2. Dynamical stability and squeezing threshold a new method
- 3. Characterisation of sensitivity
- 4. Tolerance to detection optical loss and other losses
- 5. Comparison to optomechanical analogue
- 6. Comparison to astrophysical kilohertz target
- 7. Idler readout scheme

Optomechanical analogue from [X. Li, M. Goryachev, Y. Ma, et al., 2020, arXiv:2012.00836 [quant-ph]]

Characterisation of sensitivity

LIGO Voyager parameter set from [R. X. Adhikari, K. Arai, A. F. Brooks, et al. 2020. Class. Quantum Grav., 37(16):165003.]

Tolerance to detection optical loss

Degenerate internal squeezing model from [M. Korobko, Y. Ma, Y. Chen, et al., 2019, Light Sci. Appl., 8(1):118]

James Gardner

Tolerance to detection optical loss

Degenerate internal squeezing model from [M. Korobko, Y. Ma, Y. Chen, et al., 2019, Light Sci. Appl., 8(1):118]

Comparison to astrophysical kilohertz target

Astrophysical target from [H. Miao, H. Yang, and D. Martynov., 2018, Phys. Rev. D, 98(4):044044]

Idler readout scheme

2. Extended model

- 2.1 Analytic additions, e.g. pump depletion
- 2.2 Numerical validation
- 2.3 Parity-time symmetry future collaboration
- 3. Experimental table-top demonstration

Nondegenerate internal squeezing

- 1. Detection loss-resistant, all-optical configuration
- 2. Well-characterised by analytic model
- 3. Can improve kilohertz (1–4 kHz) or broadband (0.1–4 kHz) sensitivity to gravitational waves

gravitational-wave detection \implies new physics!

Thank you, CGA!

threshold: gain=loss

threshold + no pump depletion \implies borderline unstable

Stability of nondegenerate internal squeezing

My method: threshold via stability

Stable optomechanical filtering

Abstract mode structure

Threshold of degenerate internal squeezing

Parity-time (PT) symmetry

$$\hat{H}_{I} = i\hbar\omega_{s}(\hat{a}\hat{b}^{\dagger} - \hat{a}^{\dagger}\hat{b}) + i\hbar\chi(\hat{b}^{\dagger}\hat{c}^{\dagger} - \hat{b}\hat{c})$$
 (1)

- 1. parity: $\hat{a} \leftrightarrow \hat{c}$
- 2. time: $\hat{a} \leftrightarrow \hat{a}^{\dagger}, \hat{c} \leftrightarrow \hat{c}^{\dagger}$
- 3. parity-time: $\hat{a} \mapsto \hat{c}^{\dagger}$ (and $\hat{b} \mapsto \hat{b}$)
- 4. \hat{H}_{I} parity-time symmetric at $\omega_{s} = \chi$

carrier wavelength, λ_{0}	$2 \ \mu m$	signal mode transmissivity, $T_{SRM,b}$	0.046
arm cavity length, L _{arm}	4 km	signal readout rate, γ_R^b	500 Hz
signal-recycling cavity length, L _{SRC}	1.124 km	idler mode transmissivity, $T_{SRM,c}$	0
circulating arm power, P_{circ}	3 MW	idler readout rate, γ_R^c	0
test mass mass, <i>M</i>	200 kg	arm intra-cavity loss, $T_{I,a}$	100 ppm
input test mass transmissivity, T_{ITM}	0.197	signal mode intra-cavity loss, $T_{l,b}$	1000 ppm
sloshing frequency, ω_s	5 kHz	idler mode intra-cavity loss, $T_{I,c}$	1000 ppm
		detection loss, R_{PD}	10%

LIGO Voyager parameter set from [R. X. Adhikari, K. Arai, A. F. Brooks, et al. 2020. Class. Quantum Grav., 37(16):165003.]